
Journal of Machine Learning Research 3 (2002) 397-422 Submitted 11/01; Published 11/02

Using Confidence Bounds for
Exploitation-Exploration Trade-offs

Peter Auer pauer@igi.tu-graz.ac.at

Graz University of Technology
Institute for Theoretical Computer Science
Inffeldgasse 16b
A-8010 Graz, Austria

Editor: Philip M. Long

Abstract

We show how a standard tool from statistics — namely confidence bounds — can be used
to elegantly deal with situations which exhibit an exploitation-exploration trade-off. Our
technique for designing and analyzing algorithms for such situations is general and can be
applied when an algorithm has to make exploitation-versus-exploration decisions based on
uncertain information provided by a random process.

We apply our technique to two models with such an exploitation-exploration trade-off.
For the adversarial bandit problem with shifting our new algorithm suffers only Õ

(
(ST)1/2

)
regret with high probability over T trials with S shifts. Such a regret bound was previously
known only in expectation. The second model we consider is associative reinforcement
learning with linear value functions. For this model our technique improves the regret from
Õ
(
T 3/4

)
to Õ

(
T 1/2

)
.

Keywords: Online Learning, Exploitation-Exploration, Bandit Problem, Reinforcement
Learning, Linear Value Function

1. Introduction

In this paper we consider situations which exhibit an exploitation-exploration trade-off. In
such a scenario an algorithm repeatedly makes decisions to maximize its rewards — the
exploitation — but the algorithm has only limited knowledge about the process generating
the rewards. Thus occasionally the algorithm might decide to do exploration which improves
the knowledge about the reward generating process, but which is not necessarily maximizing
the current reward.

If the knowledge about the reward generating process can be captured by a set of random
variables, then confidence bounds provide a very useful tool to deal with the exploitation-
exploration trade-off. The estimated means (or a similar quantity) of the random variables
reflect the current knowledge of the algorithm in a condensed form and guide further ex-
ploitation. The widths of the confidence bounds reflect the uncertainty of the algorithm’s
knowledge and will guide further exploration. By relating means and widths we can obtain
criteria on when to explore and when to exploit. How such a criterion is constructed de-
pends on the actual model under consideration. In the remainder of this paper we consider
two such models in detail, the adversarial bandit problem with shifting and associative re-

c©2002 Peter Auer.

Auer

inforcement learning with linear value functions. The bandit problem is maybe the most
generic way to model an exploitation-exploration trade-off (Robbins, 1952, Lai and Rob-
bins, 1985, Berry and Fristedt, 1985, Agrawal, 1995, Auer et al., 1995, Sutton and Barto,
1998). In this paper we will consider a worst-case variant of the bandit problem with
shifting. Furthermore, we will consider associative reinforcement learning with linear value
functions (Kaelbling, 1994a,b, Sutton and Barto, 1998, Abe and Long, 1999). In this model
exploration is more involved since knowledge about a functional dependency has to be
collected.

Using confidence bounds to deal with an exploitation-exploration trade-off is not a new
idea (e.g. Kaelbling, 1994a,b, Agrawal, 1995). What is new in this paper is that we use
confidence bounds in rather complicated situations and that we are still able to prove
rigorous performance bounds. Thus we believe that confidence bounds can be successfully
applied in many such situations with an exploitation-exploration trade-off. Furthermore,
since algorithms which use confidence bounds can be tuned quite easily, we expect that
such algorithms prove useful in practical applications.

In Section 2 we start off with the random bandit problem. The random bandit problem
is a typical model for the trade-off between exploitation and exploration. Using upper con-
fidence bounds, very simple and almost optimal algorithms for the random bandit problem
have been derived. We shortly review this previous work since it illuminates the main ideas
of using upper confidence bounds. In Section 3 we introduce the adversarial bandit problem
with shifting and compare our new results with the previously known results. In Section 4
we define the model for associative reinforcement learning with linear value functions and
discuss our results for this model.

2. Upper Confidence Bounds for the Random Bandit Problem

The random bandit problem was originally proposed by Robbins (1952). It formalizes an
exploitation-exploration trade-off where in each trial t = 1, . . . , T one out of K possible
alternatives has to be chosen. We denote the choice for trial t by i(t) ∈ {1, . . . ,K}. For
the chosen alternative a reward xi(t)(t) ∈ R is collected and the rewards for the other
alternatives xi(t) ∈ R, i ∈ {1, . . . ,K} \ {i(t)}, are not revealed. The goal of an algorithm
for the bandit problem is to maximize its total reward

∑T
t=1 xi(t)(t). For the random bandit

problem1 it is assumed that in each trial the rewards xi(t) are drawn independently from
some fixed but unknown distributions D1, . . . ,DK . The expected total reward of a learning
algorithm should be close to the expected total reward given by the best distribution Di.
Thus the regret of a learning algorithm for the random bandit problem is defined as

R̄(T) = max
i∈{1,...,K}

E

[
T∑
t=1

xi(t)

]
−E

[
T∑
t=1

xi(t)(t)

]
.

In this model the exploitation-exploration trade-off is reflected on one hand by the necessity
for trying all alternatives, and on the other hand by the regret suffered when trying an

1. The term “bandit problem” (or more precisely “K-armed bandit problem”) reflects the problem of a
gambler in a room with various slot machines. In each trial the gambler has to decide which slot
machine he wants to play. To maximize his total gain or reward his (rational) choice will be based on
the previously collected rewards.

398

Confidence Bounds for Exploitation-Exploration Trade-offs

alternative which is not optimal: too little exploration might make a sub-optimal alternative
look better than the optimal one because of random fluctuations, too much exploration
prevents the algorithm from playing the optimal alternative often enough which also results
in a larger regret.

Lai and Robbins (1985) have shown that an optimal algorithm achieves R̄(T) = Θ (lnT)
as T →∞ when the variances of the distributions Di are finite.2 Agrawal (1995) has shown
that a quite simple learning algorithm suffices to obtain such performance. This simple
algorithm is based on upper confidence bounds of the form µ̂i(t) + σi(t) for the expected
rewards µi of the distributions Di. Here µ̂i(t) is an estimate for the true expected reward
µi and σi(t) is chosen such that µ̂i(t) − σi(t) ≤ µi ≤ µ̂i(t) + σi(t) with high probability.
In each trial t the algorithm selects the alternative with maximal upper confidence bound
µ̂i(t) + σi(t). Thus an alternative i is selected if µ̂i(t) is large or if σi(t) is large. Informally
we may say that a trial is an exploration trial if an alternative with large σi(t) is chosen
since in this case the estimate µ̂i(t) is rather unreliable. When an alternative with large
µ̂i(t) is chosen we may call such a trial an exploitation trial. Since σi(t) decreases rapidly
with each choice of alternative i, the number of exploration trials is limited. If σi(t) is small
then µ̂i(t) is close to µi and an alternative is selected in an exploitation trial only if it is
indeed the optimal alternative with maximal µi. Thus the use of upper confidence bounds
automatically trades off between exploitation and exploration.

3. The Adversarial Bandit Problem with Shifts

The adversarial bandit problem was first analyzed by Auer et al. (1995). In contrast to the
random bandit problem the adversarial bandit problem makes no statistical assumptions on
how the rewards xi(t) are generated. Thus, the rewards might be generated in an adversarial
way to make life hard for an algorithm in this model. Since the rewards are not random
any more, the regret of an algorithm for the adversarial bandit problem is defined as

R(T) = max
i∈1,...,K

T∑
t=1

xi(t)−
T∑
t=1

xi(t)(t) (1)

where R(T) might be a random variable depending on a possible randomization of the
algorithm. In our paper (Auer et al., 1995) we have derived a randomized algorithm which
achieves E [R(T)] = O

(
T 2/3

)
for bounded rewards. In a subsequent paper (Auer et al.,

1998) this algorithm has been improved to yield E [R(T)] = O
(
T 1/2

)
. In the same paper

we have also shown that a variant of the algorithm satisfies R(T) = O
(
T 2/3(lnT)1/3

)
with

high probability. This bound was improved again (Auer et al., 2000) as we can show that
R(T) = O

(
T 1/2(lnT)1/2

)
with high probability. This is almost optimal since a lower bound

E [R(T)] = Ω
(
T 1/2

)
has already been shown (Auer et al., 1995). This lower bound holds

even if the rewards are generated at random as for the random bandit problem. The reason
is that for suitable distributions Di we have

E

[
max

i∈{1,...,K}

T∑
t=1

xi(t)

]
= max

i∈{1,...,K}
E

[
T∑
t=1

xi(t)

]
+ Ω

(√
T
)

2. Their result is even more general.

399

Auer

and thus E [R(T)] = R̄(T) + Ω
(√

T
)
.

In the current paper we consider an extension of the adversarial bandit problem where
the bandits are allowed to “shift”: the algorithm keeps track of the alternative which gives
highest reward even if this best alternative changes over time. Formally we compare the
total reward collected by the algorithm with the total reward of the best schedule with S
segments {1, . . . , t1}, {t1 + 1, . . . , t2}, . . . , {tS−1 + 1, . . . , T}. The regret of the algorithm
with respect to the best schedule with S segments is defined as

RS(T) = max
0=t0<t1<···<tS=T


 S∑
s=1


 max
i∈{1,...,K}

ts∑
t=ts−1+1

xi(t)




−

T∑
t=1

xi(t)(t).

We will show that RS(T) = O
(√

TS ln(T)
)

with high probability. This is essentially
optimal since any algorithm which has to solve S independent adversarial bandit problems
of length T/S will suffer Ω

(√
TS
)

regret. For a different algorithm Auer et al. (2000)

show the bound E [RS(T)] = O
(√

TS ln(T)
)
, but for that algorithm the variance of the

regret is so large that no interesting bound on the regret can be given that holds with high
probability.

3.1 The Algorithm for the Adversarial Bandit Problem with Shifting

Our algorithm ShiftBand (Figure 1) for the adversarial bandit problem with shifting
combines several approaches which have been found useful in the context of the bandit
problem or in the context of shifting targets. One of the main ingredients is that the
algorithm calculates estimates for the rewards of all the alternatives. For a single trial these
estimates are given by x̂i(t) since the expectation of such an estimate equals the true reward
xi(t).

Another ingredient is the exponential weighting scheme which for each alternative cal-
culates a weight wi(t) from an estimate of the cumulative rewards so far. Such exponential
weighting schemes have been used for the analysis of the adversarial bandit problem by Auer
et al. (1995, 1998, 2000). In contrast to previous algorithms (Auer et al., 1995, 1998) we
use in this paper an estimate of the cumulative rewards which does not give the correct ex-
pectation but which — as an upper confidence bound — overestimates the true cumulative
rewards. This over-estimation emphasizes exploration over exploitation, which in turn gives
more reliable estimates for the true cumulative rewards. This is the reason why we are able
to give bounds on the regret which hold with high probability. In the algorithm ShiftBand

the upper bound on the cumulative regret is present only implicitly. Intuitively the sum
t∑

τ=1

(
x̂i(τ) +

α

pi(τ)
√
TK/S

)

can be seen as this upper confidence bound on the cumulative regret
∑t

τ=1 xi(τ). In the
analysis of the algorithm the relationship between this confidence bound and the cumulative
regret will be made precise. In contrast to the random bandit problem this confidence bound
is not a confidence bound for an external random process3 but a confidence bound for the
3. This external random process generates the rewards of the random bandit problem.

400

Confidence Bounds for Exploitation-Exploration Trade-offs

Algorithm ShiftBand

Parameters: Reals α, β, η > 0, γ ∈ (0, 1], the number of trials T , the number of
segments S.
Initialization: wi(1) = 1 for i = 1, . . . ,K.
Repeat for t = 1, . . . , T

1. Choose i(t) at random accordingly to the probabilities pi(t) where

pi(t) = (1− γ)
wi(t)
W (t)

+
γ

K
and W (t) =

K∑
i=1

wi(t).

2. Collect reward xi(t)(t) ∈ [0, 1].

3. For i = 1, . . . ,K set x̂i(t) =
{
xi(t)/pi(t) if i = i(t)

0 otherwise,

and calculate the update of the weights as

wi(t+ 1) = wi(t) · exp

{
η

(
x̂i(t) +

α

pi(t)
√
TK/S

)}
+
β

K
W (t) .

Figure 1: Algorithm ShiftBand

effect of the internal randomization of the algorithm. The application of confidence bounds
to capture the internal randomization of the algorithm shows that confidence bounds are a
quite versatile tool.

The weights reflect the algorithm’s belief in which alternative is best. An alternative
is either chosen at random proportional to its weight, or with probability γ an arbitrary
alternative is chosen for additional exploration.

The final ingredient is a mechanism for dealing with shifting. The basic approach is to
lower bound the weights wi(t) appropriately. This is achieved by the term β

KW (t) in the
calculation of the weights wi(t). Lower bounding the weights means that it does not take too
long for a small weight to become large again if it corresponds to the new best alternative
after a shift. Similar ideas for dealing with changing targets have been used bt Littlestone
and Warmuth (1994), Auer and Warmuth (1998), and Herbster and Warmuth (1998).

In the remainder of this section we assume that for all rewards xi(t) ∈ [0, 1]. If the
rewards xi(t) are not in [0, 1] but bounded, then an appropriate scaling gives results similar
to the theorems below.

Theorem 1 We use the notation of (1) and Figure 1. If T , S, K, and δ, are such that T ≥
144 KS ln(TK/δ), and algorithm ShiftBand is run with parameters α = 2

√
ln(T 3K/δ),

β = 1/T , γ = 2Kη, and η =
√

ln(TK) S/(TK), then the regret of the algorithm satisfies

RS(T) ≤ 11
√
TKS ln(T 3K/δ) (2)

401

Auer

with probability at least 1− δ.

We note that for the bound in (2) the number of trials T and the number of shifts S
have to be known in advance. Using the doubling trick it can be shown that for a slight
modification of algorithm ShiftBand (2) holds with a slightly worse constant even if the
number of trials T is not known in advance. If S is not known and the algorithm is run
with parameter S0 then we can prove the following generalization of Theorem 1.

Theorem 2 We use the notation of (1) and Figure 1. If T , S0, K, and δ, are such that T ≥
144 KS0 ln(TK/δ), and algorithm ShiftBand is run with parameters α = 2

√
ln(T 3K/δ),

β = 1/T , γ = 2Kη, and η =
√

ln(TK) S0/(TK), then the regret of the algorithm satisfies

RS(T) ≤
(

8
√
S0 + 3

S√
S0

)√
TK ln(T 3K/δ). (3)

with probability at least 1− δ.

It is easy to see that Theorem 1 follows from Theorem 2 if S is known in advance and S0

is set equal to S.

Remark 3 Finally, we remark that Theorems 1 and 2 hold unchanged even if the re-
wards depend on the algorithm’s past choices i(1), . . . , i(t− 1) (but not on future choices
i(t), i(t + 1), . . .). This can be seen from the proof below. This allows the application of our
result in game theory along the line of our matrix game application (see Auer et al., 1995).

3.2 Proof of Theorem 2

We start with an outline of the proof. We need to show that the regret of our algorithm is
not much worse than the regret of the best schedule of shifts4 {1, . . . , t1}, {t1 + 1, . . . , t2},
. . . , {tS−1 + 1, . . . , T}. To achieve this we will show that for each segment {T1 + 1, . . . , T2}
the regret of our algorithm on this segment is close to the regret of the best alternative
for this segment. Considering a segment (T1, T2] we show an upper bound on the true
cumulative reward (Lemma 4) which holds with high probability. Then we show that the
cumulative reward obtained by our algorithm is close to this bound (Lemma 5).

The upper bound which is shown in Lemma 4 relies on the fact that

1
η

ln
wi(T2 + 1)
wi(T1 + 1)

≥
T2∑

t=T1+1

(
x̂i(t) +

α

pi(t)
√
TK/S0

)

is essentially an upper bound on the true cumulative reward of alternative i for this segment,

T2∑
t=T1+1

xi(t).

The lemma draws from martingale theory and is similar in spirit to Hoeffding’s inequal-
ity (Hoeffding, 1963). A similar analysis was used by Auer et al. (2000).

4. Since the number of shifts is bounded by S even the best schedule will suffer some regret.

402

Confidence Bounds for Exploitation-Exploration Trade-offs

In Lemma 5 we show that the cumulative reward of algorithm ShiftBand for seg-
ment (T1, T2] is close to maxi 1

η ln wi(T2+1)
wi(T1+1) , which is the upper bound on the true cumu-

lative reward of the best alternative. The proof of the lemma combines the proof for
algorithm Hedge (Auer et al., 1995) with techniques to deal with shifting targets (Auer and
Warmuth, 1998, Herbster and Warmuth, 1998).

Lemma 4 Choose δ > 0 and 2
√

ln(T 3K/δ) ≤ α ≤ 4
√
TK/S0. Then the probability that

for all 0 ≤ T1 < T2 ≤ T and all i ∈ {1, . . . ,K} the inequality

T2∑
t=T1+1

xi(t) ≤ 1
η

ln
wi(T2 + 1)
wi(T1 + 1)

+ α
√
TK/S0

holds is at least 1− δ.

Proof. We fix some i ∈ {1, . . . ,K} and some segment (T1, T2] and define a random variable
ft as

ft = min

{
α

4
√
TK/S0

,
α
√
TK/S0

2
∑t

τ=T1+1
1

pi(τ)

}
.

Thus ft+1 ≤ ft and ft ≤ 1. Since

wi(t+ 1) ≥ wi(t) · exp

{
η

(
x̂i(t) +

α

pi(t)
√
TK/S0

)}

we get

P
{ T2∑

t=T1+1

xi(t) >
1
η

ln
wi(T2 + 1)
wi(T1 + 1)

+ α
√
TK/S0

}

≤ P
{ T2∑

t=T1+1

xi(t)>
T2∑

t=T1+1

[
x̂i(t) +

α

pi(t)
√
TK/S0

]
+ α

√
TK/S0

}

= P
{ T2∑

t=T1+1

[
xi(t)− x̂i(t)− α

2pi(t)
√
TK/S0

]

> α
√
TK/S0 +

T2∑
t=T1+1

α

2pi(t)
√
TK/S0

}

≤ P
{ T2∑

t=T1+1

[
xi(t)− x̂i(t)− α

2pi(t)
√
TK/S0

]

> max{α
√
TK/S0,

T2∑
t=T1+1

α

2pi(t)
√
TK/S0

}
}

= P
{ T2∑

t=T1+1

[
xi(t)− x̂i(t)− α

2pi(t)
√
TK/S0

]
>

α2

4fT2

}

403

Auer

= P
{
fT2

T2∑
t=T1+1

[
xi(t)− x̂i(t)− α

2pi(t)
√
TK/S0

]
> α2/4

}

= P
{

exp
{
fT2

T2∑
t=T1+1

[
xi(t)− x̂i(t)− α

2pi(t)
√
TK/S0

] }
> exp

{
α2/4

}}

≤ E
[

exp
{
fT2

T2∑
t=T1+1

[
xi(t)− x̂i(t)− α

2pi(t)
√
TK/S0

] }]
· exp

{−α2/4
}

(4)

by Markov’s inequality. We set

Vt = exp
{
ft

t∑
τ=T1+1

[
xi(τ)− x̂i(τ)− α

2pi(τ)
√
TK/S0

] }

and find that

Vt = exp

{
ft

[
xi(t)− x̂i(t)− α

2pi(t)
√
TK/S0

]}
· (Vt−1)ft/ft−1 .

We denote by Et the expectation conditioned on the previous trials 1, . . . , t − 1. Since
ft[xi(t)− x̂i(t)] ≤ 1, ex ≤ 1 + x+ x2 for x ≤ 1, Et [x̂i(t)] = xi(t), and

Et

[
(xi(t)− x̂i(t))2

]
= pi(t) (xi(t)− xi(t)/pi(t))2 + (1− pi(t)) (xi(t)− 0)2

= xi(t)2 (1/pi(t)− 1)
≤ 1/pi(t)

we have that

Et [exp {ft[xi(t)− x̂i(t)]}] ≤ 1 + f2
t /pi(t).

Since ft ≤ α

2
√
TK/S0

, vu ≤ 1 + v for u ∈ [0, 1], and (1 + f)e−f ≤ 1, we get

Et [Vt] = Et [exp {ft [xi(t)− x̂i(t)]}] · exp

{
− αft

2pi(t)
√
TK/S0

}
· (Vt−1)ft/ft−1

≤
(

1 +
f2
t

pi(t)

)
· exp

{
− f2

t

pi(t)

}
· (1 + Vt−1)

≤ 1 + Vt−1.

Thus it follows by induction over t that E [VT2] ≤ T2 − T1. In combination with (4), using
the definition of α, and summing over all i, T1, and T2, this proves the lemma. �

404

Confidence Bounds for Exploitation-Exploration Trade-offs

Lemma 5 Choose α ≤ √TK/S0, β ≤ 1/8, η ≤ 1
12K , and 2Kη ≤ γ ≤ 1/6. Then for all

segments (T1, T2],

T2∑
t=T1+1

xi(t)(t) ≥ 1− γ − 2Kη
η

max
i

ln
wi(T2 + 1)
wi(T1 + 1)

− (T2 − T1)

(
α

√
KS0

T
+
α2S0

T
+
β

η

)

− 1
η

ln
K(e+ β)

β
.

Proof.

W (t+ 1)
W (t)

=
K∑
i=1

wi(t+ 1)
W (t)

=
K∑
i=1

wi(t)
W (t)

· exp

{
η

(
x̂i(t) +

α

pi(t)
√
TK/S0

)}
+ β

≤
K∑
i=1

pi(t)− γ/K

1− γ
·
(

1 + ηx̂i(t) +
αη

pi(t)

√
S0

TK
+ 2η2(x̂i(t))2 +

2α2η2S0

(pi(t))2TK

)
+ β

(since exp {a+ b} ≤ 1 + a+ b+ 2a2 + 2b2 for 0 ≤ a, b ≤ 1/2,
ηx̂i(t) ≤ η/pi(t) ≤ η(K/γ) ≤ 1/2, and (η/pi(t))(α/

√
TK/S0) ≤ 1/2)

≤ 1 +
K∑
i=1

pi(t)
1− γ

·
(
ηx̂i(t) +

αη

pi(t)

√
S0

TK
+ 2η2(x̂i(t))2 +

2α2η2S0

(pi(t))2TK

)
+ β

= 1 +
η

1− γ

K∑
i=1

pi(t)x̂i(t) +
αη

1− γ

√
KS0

T
+

2η2

1− γ

K∑
i=1

pi(t)(x̂i(t))2

+
2α2η2

1− γ

S0

TK

K∑
i=1

1
pi(t)

+ β

≤ 1 +
η

1− γ
xi(t)(t) +

αη

1− γ

√
KS0

T
+

2η2

1− γ

K∑
i=1

x̂i(t) +
α2η

1− γ

S0

T
+ β .

For the last inequality we used the definition of x̂i(t) and pi(t) ≥ γ/K ≥ 2η. Since ln(1+x) ≤
x for x ≤ 1, taking logarithms and summing over t = T1 + 1, . . . , T2 yields

ln
W (T2 + 1)
W (T1 + 1)

≤ η

1− γ

T2∑
t=T1+1

xi(t)(t) +
αη(T2 − T1)

1− γ

√
KS0

T

+
2η2

1− γ

K∑
i=1

T2∑
t=T1+1

x̂i(t) +
α2η

1− γ
S0
T2 − T1

T
+ β(T2 − T1)

405

Auer

and

T2∑
t=T1+1

xi(t)(t) ≥ 1− γ

η
ln
W (T2 + 1)
W (T1 + 1)

− 2η
K∑
i=1

T2∑
t=T1+1

x̂i(t)

−(T2 − T1)

(
α

√
KS0

T
+
α2S0

T
+
β

η

)
.

From the definition of wi(t) we find that wi(t+ 1)/wi(t) ≥ exp{ηx̂i(t)}. Thus

η

K∑
i=1

T2∑
t=T1+1

x̂i(t) ≤ Kmax
i
η

T2∑
t=T1+1

x̂i(t) ≤ Kmax
i

ln
wi(T2 + 1)
wi(T1 + 1)

.

Again from the definition of wi(t) we find that

wi(t+ 1) = wi(t) · exp
{
ηx̂i(t) + (η/pi(t))(α/

√
TK/S0)

}
+
β

K
W (t)

≤ wi(t) · exp {1}+ βW (t)

since ηx̂i(t) ≤ 1/2 and (η/pi(t))(α/
√
TK/S0) ≤ 1/2. Thus W (t+ 1) =

∑k
i=1 wi(t+ 1) ≤∑k

i=1wi(t) · exp {1} + βW (t) = (e+ β)W (t) and wi(t+ 1) ≥ β
KW (t) and we get

ln
W (T2 + 1)
W (T1 + 1)

≥ ln
wi(T2 + 1)
W (T1 + 1)

≥ ln
wi(T2 + 1)

(e+ β)W (T1)
≥ ln

wi(T2 + 1)
wi(T1 + 1)

+ ln
β

K(e+ β)
.

Collecting terms gives the statement of the lemma. �
We are now ready to prove Theorem 2 by combining Lemmas 4 and 5 and substituting

the parameters. We recall that γ = 2Kη. With probability at least 1− δ we have for each
segment (T1, T2] that

T2∑
t=T1+1

xi(t)(t) ≥ (1− γ − 2Kη)


 T2∑
t=T1+1

xi(t)− α
√
TK/S0




− (T2 − T1)

(
α

√
KS0

T
+
α2S0

T
+
β

η

)

− 1
η

ln
K(e+ β)

β

≥
T2∑

t=T1+1

xi(t)− α
√
TK/S0 − 1

η
ln
K(e+ β)

β

− (T2 − T1)

(
4Kη + α

√
KS0

T
+
α2S0

T
+
β

η

)

≥
T2∑

t=T1+1

xi(t)− α

√
TK

S0
− α

2

√
TK

S0

406

Confidence Bounds for Exploitation-Exploration Trade-offs

− (T2 − T1)
(

2α

√
KS0

T
+ α

√
KS0

T
+
α

6

√
S0

T
+
α

2

√
K

TS0

)

≥
T2∑

t=T1+1

xi(t)− 3
2
α

√
TK

S0
− 4α(T2 − T1)

√
KS0

T
.

Now we sum over all S segments (0, t1], (t1, t2], . . . , (tS−1, T] and get the theorem.

4. Associative Reinforcement Learning with Linear Value Functions

The second model for an exploitation-exploration trade-off that we consider in this paper
is an extension of a model proposed by Abe and Long (1999). It is also a special case of
the reinforcement learning model (Kaelbling, 1994a,b, Sutton and Barto, 1998). In this
model again a learning algorithm has to choose an alternative i(t) ∈ {1, . . . ,K} in each
trial t = 1, . . . , T , observes the reward xi(t)(t) of the chosen alternative i(t), and still tries to
maximize its cumulative reward

∑T
t=1 xi(t)(t). The significant difference in comparison with

the bandit problem is that the algorithm is provided with additional information. For each
alternative i a feature vector zi(t) ∈ Rd is given to the learning algorithm and the algorithm
chooses an alternative based on these feature vectors. The meaning of this feature vector
is that it describes the expected reward for alternative i in trial t: it is assumed that there
is an unknown weight vector f ∈ Rd which is fixed for all trials and alternatives, such
that f · zi(t) gives the expected reward E [xi(t)] for all i ∈ {1, . . . ,K} and all t = 1, . . . , T .
This means that all xi(t) are assumed to be independent random variables with expectation
E [xi(t)] = f · zi(t).

In this model we compare the performance of a learning algorithm with the performance
of an optimal strategy which knows the weight vector f . Such an optimal strategy will choose
alternative i∗(t) which maximizes f · zi(t). Thus the loss of a learning algorithm against
this optimal strategy is given by

B(T) =
T∑
t=1

xi∗(t)(t)−
T∑
t=1

xi(t)(t). (5)

Using the terms of reinforcement learning the current feature vectors z1(t), . . . , zK(t)
represent the state of the environment and the choice of an alternative represents the action
of the learning algorithm. Compared with reinforcement learning the main restriction of
our model is that it does not capture how actions might influence future states of the
environment. We also assume that the value function (which gives the expected reward)
is a linear function of the feature vectors. This is often a quite reasonable assumption,
provided that the feature vectors were designed appropriately (Sutton and Barto, 1998).

As an example that motivates our model we mention the problem of choosing internet
banner ads (Abe and Long, 1999, Abe and Nakamura, 1999). An internet ad server has
the goal to display ads which the user is likely to click on. It is reasonable to suppose that
the probability of a click can be approximated by a linear function of a combination of the
user’s and the ad’s features. If the ad server is able to learn this linear function then it can
select ads which are most likely to be clicked on by the user.

407

Auer

Compared with the bandit problem, associative reinforcement learning with linear value
functions might seem easier since additional information is available for the learning algo-
rithm. But this advantage is balanced by the much harder evaluation criterion: for the
bandit problem (without shifts) the learning algorithm has to compete only with the single
best alternative, whereas in the reinforcement learning model the algorithm has to compete
with a strategy which might choose different alternatives in each trial depending on the
feature vectors. Thus the reinforcement learning algorithm needs to learn and approximate
the unknown weight vector f .

The exploitation-exploration trade-off in the associative reinforcement learning model
is more subtle than for the bandit problem. Observing the feature vectors the learning
algorithm might either go with the alternative which looks best given the past observations,
or it might choose an alternative which does not look best but which provides more infor-
mation about the unknown weight vector f . Again we use confidence bounds to deal with
this trade-off, but the application of confidence bounds is more involved than for the bandit
problem. Nevertheless, we can improve the bounds given by Abe and Long (1999), which
stated that E [B(T)] = O

(
T 3/4

)
: for our algorithm we prove that B(T) = O

(
(Td)1/2 · lnT)

with high probability. The appearance of d (the dimension of the weight vector f and the
feature vectors zi(t)) is necessary since Abe and Long (1999) showed a lower bound of
E [B(T)] = Ω

(
T 3/4

)
when d = Ω

(
T 1/2

)
.

4.1 An Algorithm for Associative Reinforcement Learning with Linear Value
Functions

We denote by ||·|| the Euclidean norm and assume that the unknown weight vector satisfies
||f || ≤ 1 and that all feature vectors also satisfy ||zi(t)|| ≤ 1. Furthermore we assume
that the rewards xi(t) are bounded in [0, 1]. If these conditions are not satisfied than an
appropriate scaling gives similar results. We will make no further assumptions about the
feature vectors zi(t).

In the following we will need to do some linear algebra. We assume that the feature
vectors are column vectors with zi(t) ∈ Rd×1. We denote by Z ′ the transposed matrix of
Z and we denote by ∆ (λ1, . . . , λd) the diagonal matrix with the elements λ1, . . . , λd.

Our algorithm LinRel (Figure 2) calculates upper confidence bounds (9) for the means
E [xi(t)] = f · zi(t) and chooses the alternative with the largest upper confidence bound,
again trading off exploitation controlled by the estimation of the mean, and exploration
controlled by the width of the confidence interval. The main idea of the algorithm is to
estimate the mean E [xi(t)] from a weighted sum of previous rewards. For this we write
a feature vector zi(t) as a linear combination of some previously chosen feature vectors
zi(τ)(τ) where τ ∈ Ψ(t) ⊆ {1, . . . , t− 1} (except for d trials this is always possible),

zi(t) =
∑
τ∈Ψ(t)

ai(τ) zi(τ)(τ) = Z(m) · ai(m)′

for some ai(t) ∈ R1×|Ψ(t)|, where Z(t) is a matrix of previously chosen feature vectors as
defined in Figure 2. Then

f · zi(t) =
∑
τ∈Ψ(t)

ai(τ)
(
f · zi(τ)(τ)

)
=
∑
τ∈Ψ(t)

ai(τ) E
[
xi(τ)(τ)

]
= E [x(t)] · ai(t)′

408

Confidence Bounds for Exploitation-Exploration Trade-offs

where x(t) is the vector of previous rewards as defined in Figure 2. Thus x(t) · ai(t)′ is a
good estimate for f ·zi(t). To get a narrow confidence interval we need to keep the variance
of this estimate small. For calculating this variance we would like to view x(t) · ai(t)′ as a
sum of independent random variables xi(τ)(τ) with coefficients ai(τ). Unfortunately this is
not true for the vanilla version of our algorithm where Ψ(t) = {1, . . . , t− 1} since previous
rewards influence following choices. To achieve independence we will have to choose Ψ(t)
more carefully, the details will be given later. For now we assume independence and since
xi(τ)(τ) ∈ [0, 1], the variance of this estimate is bounded by ||ai(t)||2 /4. Thus we are
interested in a linear combination for zi(t) which minimizes ||ai(t)||2. Minimizing ||ai(t)||2
under the constraint zi(t) = Z(t) · ai(t)′ gives

ai(t) = zi(t)′ ·
(
Z(t) · Z(t)′

)−1 · Z(t) . (6)

(Here we assume that Z(t) · Z(t)′ is invertible which is not necessarily true. In the next
paragraph we deal with this issue.) Then we get x(t)·ai(t)′ = x(t)·Z(t)′·(Z(t) · Z(t)′)−1·zi(t)
as estimate for E [xi(t)]. It is interesting to notice that this can be written as x(t) · ai(t)′ =
f̂ ·zi(t) where f̂ = x(t) ·Z(t)′ ·(Z(t) · Z(t)′)−1 is the least square estimate of the linear model
E [x(t)] = f · Z(t).

To get confidence bounds we now need to upper bound ||ai(t)||2. It turns out that we
get useful bounds only if Z(t) · Z(t)′ is sufficiently regular in the sense that all eigenvalues
are sufficiently large. If some of the eigenvalues are small we have to deal with them
separately5. This is the reason why we do not use (6) to calculate ai(t) but use the more
complicated (7), see Figure 2. Essentially (7) projects the feature vectors into the linear
subspace of eigenvectors with large eigenvalues and ignores directions which correspond to
eigenvectors with small eigenvalues.

Our goal is to bound the performance of algorithm LinRel by Õ
(√

Td
)
. Unfortunately

we are not able to show such a bound for the vanilla version of our algorithm with Ψ(t) =
{1, . . . , t − 1}. Instead, we will use a master algorithm SupLinRel which uses LinRel

as a subroutine with appropriate choices for Ψ(t) and for which we can prove appropriate
performance bounds. The algorithm SupLinRel is presented and analysed in Section 4.3.
Theorem 6 below gives the performance bound for SupLinRel. We believe that for most
practical applications the simpler algorithm LinRel with Ψ(t) = {1, . . . , t−1} achieves the
same — or even better — performance, but there are artificial scenarios where this might
be not true.

Theorem 6 We use the notation of (5) and Figure 3. When algorithm SupLinRel is run
with parameter δ/(1+ ln T) then with probability 1− δ the regret of the algorithm is bounded
by

B(T) ≤ 44 · (1 + ln(2KT lnT))3/2 ·
√
Td+ 2

√
T .

Remark 7 A similar result as in Theorem 6 can be obtained when the mean of each alter-
native i is governed by a separate weight vector fi such that E

[
xi(t)(t)

]
= fi · zi(t)(t).

5. It seems that making Z(t) ·Z(t)′ regular by adding a multiple of the identity matrix as in ridge regression
is not sufficient. This would result in too small confidence intervals by overestimating the confidence.
But this regards only the theoretical analysis, and we believe that in most practical applications its is
sufficient to add in the identity matrix.

409

Auer

Algorithm LinRel

Parameters: δ ∈ [0, 1], the number of trials T .
Inputs:
The indexes of selected feature vectors, Ψ(t) ⊆ {1, . . . , t− 1}.
The new feature vectors z1(t), . . . , zK(t).

1. Let Z(m) =
(
zi(τ)(τ)

)
τ∈Ψ(t)

be the matrix of selected feature vectors

and x(m) =
(
xi(τ)(τ)

)
τ∈Ψ(t)

the vector of corresponding rewards.

2. Calculate the eigenvalue decomposition

Z(t) · Z(t)′ = U(t)′ ·∆ (λ1(t), . . . , λd(t)) · U(t)

where λ1(t), . . . , λk(t) ≥ 1, λk+1(t), . . . , λd(t) < 1, and U(t)′ · U(t) = ∆ (1, . . . , 1).

3. For each feature vector zi(t) set z̃i(t) = (z̃i,1(t), . . . , z̃i,d(t))′ = U(t) · zi(t)
and ũi(t) = (z̃i,1(t), . . . , z̃i,k(t), 0, . . .)′, ṽi(t) = (0, . . . , 0, z̃i,k+1(t), . . . , z̃i,d(t))′.

4. Calculate

ai(t) = ũi(t)′ ·∆
(

1
λ1(t)

, . . . ,
1

λk(t)
, 0, . . . , 0

)
· U(t) · Z(t). (7)

5. Calculate the upper confidence bounds and its widths, i = 1, . . . ,K,

widthi(t) = ||ai(t)||
(√

ln(2TK/δ)
)

+ ||ṽi(t)|| , (8)

ucbi(t) = x(t) · ai(t)′ + widthi(t). (9)

6. Choose that alternative i(t) which maximizes the upper confidence bound ucbi(t).

Figure 2: Algorithm LinRel

4.2 Analysis of Algorithm LinRel

Before we turn to the master algorithm SupLinRel in the next section, we first analyse its
main ingredient, the algorithm LinRel.

At first we show that (9) is indeed a confidence bound on the mean E
[
xi(t)(t)

]
. For this

we use the Azuma-Hoeffding bound.

Lemma 8 (Azuma, 1967, Alon and Spencer, 1992) Let X1, . . . ,Xm be random vari-
ables with |Xτ | ≤ aτ for some a1, . . . , am > 0. Then

P

{∣∣∣∣∣
m∑
τ=1

Xτ −
m∑
τ=1

E [Xτ |X1, . . . ,Xτ−1]

∣∣∣∣∣ ≥ B

}
≤ 2 exp

{
− B2

2
∑m

τ=1 a
2
τ

}
.

410

Confidence Bounds for Exploitation-Exploration Trade-offs

Lemma 9 We use the notation of Figure 2. Let Ψ(t) be constructed in such a way that for
fixed zi(τ)(τ), τ ∈ Ψ(t), the rewards xi(τ)(τ), τ ∈ Ψ(t), are independent random variables
with means E

[
xi(τ)(τ)

]
= f · zi(τ)(τ). Then with probability 1 − δ/T we have that for all

i ∈ {1, . . . ,K},
|x(t) · ai(t)′ − f · zi(t)| ≤ ||ai(t)||

(√
2 ln(2TK/δ)

)
+ ||ṽi(t)|| .

Remark 10 With such a construction of Ψ(t) we will deal in Section 4.3. Observe that the
independence of ai(t) and x(t) is crucial in the following proof.

Proof of Lemma 9. For each i = 1, . . . ,K we use Lemma 8 with Xτ = xi(τ)(τ) · ai(τ).
Note that ai(τ) only depends on Z(t) and zi(t), but not on x(t) (6). Then |Xτ | ≤ ai(τ)|,∑

τ∈Ψ(t)

Xτ = x(t) · ai(t)′,

∑
τ∈Ψ(t)

E
[
Xτ |(Xσ)σ∈Ψ(t),σ<τ

]
=
∑
τ∈Ψ(t)

E [Xτ] =
∑
τ∈Ψ(t)

f · zi(τ)(τ) · ai(τ) = f · Z(t) · ai(t)′,

and
P
{∣∣x(t) · ai(t)′ − f · Z(t) · ai(t)′

∣∣ ≥ ||ai(t)||
(√

2 ln(2TK/δ)
)}

≤ δ

TK
.

Since

zi(t) = U(t)′ · z̃i(t)
= U(t)′ · ũi(t) + U(t)′ · ṽi(t)
= U(t)′ ·∆ (λ1(t), . . . , λd(t))

·U(t) · (Z(t) · Z(t)′
)−1 · Z(t) · Z(t)′ · U(t)′

·∆
(

1
λ1(t)

, . . . ,
1

λk(t)
, 0, . . . , 0

)
· ũi(t)

+U(t)′ · ṽi(t)
=

(
Z(t) · Z(t)′

) · (Z(t) · Z(t)′
)−1 · Z(t) · ai(t)′ + U(t)′ · ṽi(t)

= Z(t) · ai(t)′ + U(t)′ · ṽi(t)
and ||f || ≤ 1 we have

|f · zi(t)− f · Z(t) · ai(t)′| ≤ ||f || · ∣∣∣∣U(t)′ · ṽi(t)
∣∣∣∣ ≤ ||ṽi(t)|| .

Summing over i gives the lemma. �
By Lemma 9 we can bound the expected loss of the algorithm’s choice against the optimal
choice in terms of the ai(t) and ṽi(t). To proceed with the analysis of LinRel we need to
bound

∣∣∣∣ai(t)(t)∣∣∣∣ and
∣∣∣∣ṽi(t)(t)∣∣∣∣. For this we show that

∣∣∣∣ai(t)(t)∣∣∣∣ and
∣∣∣∣ṽi(t)(t)∣∣∣∣ are related

to the amount of change between the eigenvalues of Z(t) · Z(t)′ and Z(t+ 1) · Z(t+ 1)′ if
Ψ(t+ 1) = Ψ(t) ∪ {t}. In the following lemma

∣∣∣∣ai(t)(t)∣∣∣∣ is bounded by the relative change
of the eigenvalues larger than 1 and

∣∣∣∣ṽi(t)(t)∣∣∣∣ is bounded by the absolute change of the
eigenvalues smaller than 5.
6. If a reward xi(τ)(τ) would influence following choices of alternatives then it would also influence Z(t)

and thus the coefficients ai(τ). In such a case the Azuma-Hoeffding were not applicable.

411

Auer

Lemma 11 Let Ψ(t+ 1) = Ψ(t) ∪ {t}. The eigenvalues λ1(t), . . . , λd(t) of Z(t) · Z(t)′ and
the eigenvalues of λ1(t+ 1), . . . , λd(t+ 1) of Z(t+ 1) · Z(t+ 1)′ can be arranged in such a
way that

λj(t) ≤ λj(t+ 1) (10)

and ∣∣∣∣ai(t)(t)∣∣∣∣2 ≤ 10
∑

j:λj(t)≥1

λj(t+ 1)− λj(t)
λj(t)

, (11)

∣∣∣∣ṽi(t)(t)∣∣∣∣2 ≤ 4
∑

j:λj(t+1)<5

[λj(t+ 1)− λj(t)] . (12)

The proof of this lemma is somewhat technical and is therefore given in Appendix A. Some
intuition about the lemma and its proof can be gained from the following observations.
First, we get from (7) that

∣∣∣∣ai(t)(t)∣∣∣∣2 = ai(t)(t) · ai(t)(t)′ = ũi(t)′ ·∆
(

1
λ1(t)

, . . . ,
1

λk(t)
, 0, . . . , 0

)
· ũi(t) . (13)

Next, the sum of the eigenvalues of Z(t+ 1) ·Z(t+ 1)′ equals the sum of the eigenvalues of
Z(t) · Z(t)′ plus

∣∣∣∣zi(t)(t)∣∣∣∣2 =
∣∣∣∣ũi(t)(t)∣∣∣∣2 +

∣∣∣∣ṽi(t)(t)∣∣∣∣2, as stated in the following lemma:

Lemma 12 If Ψ(t+ 1) = Ψ(t) ∪ {t} then for the eigenvalues of Z(t) · Z(t)′ and Z(t+ 1) ·
Z(t+ 1)′ the following holds:

d∑
j=1

λj(t+ 1) =
d∑
j=1

λj(t) +
∣∣∣∣zi(t)(t)∣∣∣∣2 (14)

=
d∑
j=1

λj(t) +
∣∣∣∣ũi(t)(t)∣∣∣∣2 +

∣∣∣∣ṽi(t)(t)∣∣∣∣2 .

In the proof of Lemmas 11 and 12 (given in Appendix A) we will show that an even stronger
statement holds, namely λj(t+ 1) ≈ λj(t)+ z̃i(t),j(t)2 . From this and (13) Lemma 11 can be
derived. In a more abstract view the eigenvalues of Z(t) ·Z(t)′ serve as a potential function
for
∑

τ∈Ψ(t)

∣∣∣∣ai(τ)(τ)∣∣∣∣ +∑τ∈Ψ(t)

∣∣∣∣ṽi(t)(τ)∣∣∣∣: the eigenvalues of Z(t) · Z(t)′ grow with this

sum. From (14) we get that the sum of eigenvalues
∑d

j=1 λj(T + 1) is bounded by Ψ(T +1),

d∑
j=1

λj(T + 1) ≤ |Ψ(T + 1)| , (15)

since ||zi(t)|| ≤ 1. With this observation we can bound
∑

t∈Ψ(T+1)

∣∣∣∣ai(t)(t)∣∣∣∣ and∑
t∈Ψ(T+1)

∣∣∣∣ṽi(t)(t)∣∣∣∣.
Lemma 13 With the notation of Figure 2 we have∑

t∈Ψ(T+1)

∣∣∣∣ai(t)(t)∣∣∣∣ ≤ 2
√

5d|Ψ(T + 1)| ln |Ψ(T + 1)| ,
∑

t∈Ψ(T+1)

∣∣∣∣ṽi(t)(t)∣∣∣∣ ≤ 5
√
d|Ψ(T + 1)| .

412

Confidence Bounds for Exploitation-Exploration Trade-offs

Proof. Let the eigenvalues λj(t), j = 1, . . . , d, t ∈ Ψ(T+1), be arranged such that (10), (11)
and (12) hold. Then

∑
t∈Ψ(T+1)

∣∣∣∣ai(t)(t)∣∣∣∣ ≤ ∑
t∈Ψ(T+1)

√√√√10
∑

j:λj(t)≥1

(
λj(t+ 1)
λj(t)

− 1
)
,

∑
t∈Ψ(T+1)

∣∣∣∣ṽi(t)(t)∣∣∣∣ ≤ ∑
t∈Ψ(T+1)

√
4

∑
j:λj(t+1)<5

[λj(t+ 1)− λj(t)] .

It is not hard to see that
∑

t∈Ψ

√∑d
j=1(hj,t − 1) is maximal under the constraints hj,t ≥ 1

and
∑d

j=1

∏
t∈Ψ hj,t ≤ |Ψ|, when hj,t = (|Ψ|/d)1/|Ψ| for all t and j. Since

d∑
j=1

∏
t:λj(t)≥1

λj(t+ 1)
λj(t)

≤
d∑
j=1

λj(T + 1) ≤ |Ψ(T + 1)|

and (ψ/d)1/ψ − 1 ≤ 2
ψ lnψ for ψ, d ≥ 1, it follows that

∑
t∈Ψ(T+1)

∣∣∣∣ai(t)(t)∣∣∣∣ ≤ |Ψ(T + 1)|
√

10d
(

2
|Ψ(T + 1)| ln |Ψ(T + 1)|

)

= 2
√

5d|Ψ(T + 1)| ln |Ψ(T + 1)|.

Similarly
∑

t∈Ψ

√∑d
j=1 ∆j,t is maximal under the constraint

∑
t∈Ψ ∆j,t ≤ 5 if ∆j,t = 5/|Ψ|.

Thus ∑
t∈Ψ(T+1)

∣∣∣∣ṽi(t)(t)∣∣∣∣ ≤ |Ψ(T + 1)|
√

4
5d

|Ψ(T + 1)| ≤ 5
√
d|Ψ(T + 1)|

since
∑

t:λj(t+1)<5 [λj(t+ 1)− λj(t)] ≤ 5. �

To get a bound on the performance of our algorithm we want to combine Lemmas 9
and 13: for each trial t Lemma 9 bounds the loss in terms of

∣∣∣∣ai(t)(t)∣∣∣∣ and
∣∣∣∣ṽi(t)(t)∣∣∣∣,

and Lemma 13 bounds the sums of
∣∣∣∣ai(t)(t)∣∣∣∣ and

∣∣∣∣ṽi(t)(t)∣∣∣∣. But these sums include only
the t ∈ Ψ(T + 1) while we need to bound the loss over all t. Since the xi(t)(t) must be
independent for t ∈ Ψ(T + 1) we cannot simply include all t in Ψ(T + 1). Thus the master
algorithm presented in the next section uses a more complicated scheme which puts the
trials t = 1, . . . , T in one of S sets Ψ(1), . . . ,Ψ(S).

4.3 The Master Algorithm

The master algorithm SupLinRel maintains S sets of trials, Ψ(1)(t), . . . ,Ψ(S)(t) where each
set Ψ(s)(t) contains the trails for which a choice was made at stage s. For Lemma 9 to be
applicable these sets need to be selected in such a way that for each Ψ(s)(t) the selected
rewards xi(t)(t) are independent for all t ∈ Ψ(s)(T + 1). This is achieved by the algorithm
described in Figure 3.

413

Auer

Algorithm SupLinRel

Parameters: δ ∈ [0, 1], the number of trials T .
Initialization: Let S = lnT and set Ψ(1)(1) = · · · = Ψ(S)(1) = ∅.
Repeat for t = 1, . . . , T

1. Initialize the set of feasible alternatives A1 := {1, . . . ,K}, set s := 1.

2. Repeat until an alternative i(t) is chosen:

(a) Use LinRel with Ψ(s)(t) to calculate the upper confidence bounds ucb(s)
i (t)

and its widths width(s)
i (t) for all i ∈ As.

(b) If width(s)
i (t) > 2−s for some i ∈ As then choose this alternative and store the

corresponding trial in Ψ(s),

Ψ(s)(t+ 1) = Ψ(s)(t) ∪ {t}, Ψ(σ)(t+ 1) = Ψ(σ)(t) for σ 6= s.

(c) Else if width(s)
i (t) ≤ 1/

√
T for all i ∈ As then choose that alternative i ∈ As

which maximizes the maximum upper confidence bound ucb(s)
i (t). Do not

store this trial,

Ψ(σ)(t+ 1) = Ψ(σ)(t) for all σ = 1, . . . , S.

(d) Else if width(s)
i (t) ≤ 2−s for all i ∈ As then set

As+1 =
{
i ∈ As

∣∣∣∣ucb(s)
i (t) ≥ max

j∈As

ucb(s)
j (t)− 2 · 2−s

}

and set s := s+ 1.

Figure 3: Algorithm SupLinRel

The algorithm chooses an alternative either if it is sure that the expected reward of
this alternative is close to the optimal expected reward (step 2c: the width of the upper
confidence bounds is only 1/

√
T), or if the width of the upper confidence bound is so big

that more exploration is needed (step 2b). The sets Ψ(s) are arranged such that the allowed
width of the confidence intervals in respect to Ψ(s) is 2−s. Thus feature vectors are filtered
through the stages s = 1, . . . , S until some exploration is necessary or until the confidence
is sufficiently small. In step 2d only those alternatives which are sufficiently close to the
optimal alternative are passed to the next stage s+1: if the widths of all alternatives i ∈ A
are at most 2−s and ucb(s)

i (t) < ucb(s)
j (t) − 2 · 2−s for some j ∈ A then i cannot be the

optimal alternative. Eliminating alternatives which are obviously bad reduces the possible
loss in the next stage.

414

Confidence Bounds for Exploitation-Exploration Trade-offs

A main property of SupLinRel is the independence of the rewards xi(τ)(τ), τ ∈ Ψ(s)(t),
for each stage s.

Lemma 14 For each s = 1, . . . , S, for each t = 1, . . . , T , and for any fixed sequence of
feature vectors zi(τ)(τ), τ ∈ Ψ(s)(t), the rewards xi(τ)(τ), τ ∈ Ψ(s)(t), are independent
random variables with mean E

[
xi(τ)(τ)

]
= f · zi(τ)(τ).

Proof. Only in step 2b a trial t can be added to Ψ(s)(t). If trial t is added to Ψ(s)(t), only
depends on the results of trials τ ∈ ⋃σ<s Ψ(σ)(t) and on width(s)

i (t). From (8) we find that
width(s)

i (t) only depends on the feature vectors zi(τ)(τ), τ ∈ Ψ(s)(t), and on zi(t). This
implies the lemma. �

The analysis of algorithm SupLinRel is done by a series of lemmas which make the
intuition about SupLinRel precise. First we bound the maximal loss of the feasible alter-
natives at stage s.

Lemma 15 With probability 1− δS, for any t and any stage s,

ucb(s)
i (t)− 2 · width(s)

i (t) ≤ E [xi(t)] ≤ ucb(s)
i (t) for any i, (16)

i∗(t) ∈ As ,
and

E
[
xi∗(t)(t)

]−E [xi(t)] ≤ 8 · 2−s for any i ∈ As. (17)

Proof. Using Lemma 9 and summing over s and t gives (16).
Obviously the lemma holds for s = 1. If s > 1 then As ⊆ As−1 and step 2b implies

that width(s−1)
i (t) ≤ 2−(s−1) and width(s−1)

i∗(t) (t) ≤ 2−(s−1). Step 2d implies ucb(s−1)
i (t) ≥

ucb(s−1)
i∗(t) (t)− 2 · 2−(s−1). Thus

E [xi(t)] ≥ ucb(s−1)
i (t)− 2 · 2−(s−1) ≥ ucb(s−1)

i∗(t) (t)− 4 · 2−(s−1) ≥ E
[
xi∗(t)(t)

]− 4 · 2−(s−1)

and
ucb(s−1)

i∗(t) (t) ≥ E
[
xi∗(t)(t)

] ≥ E [xj(t)] ≥ ucb(s−1)
j (t)− 2 · 2−(s−1)

for any j ∈ As−1. �
The next lemma bounds the number of trials for which an alternative is chosen at stage s.

Lemma 16 For all s,

|Ψ(s)(T + 1)| ≤ 5 · 2s (1 + ln(2TK/δ))
√
d|Ψ(s)(T + 1)| .

Proof. By Lemma 13∑
τ∈Ψ(s)(T+1)

width(s)
i(τ)(τ) ≤ 2

√
5d|Ψ(s)(T + 1)| ln |Ψ(s)(T + 1)|

(√
ln(2TK/δ)

)

+5
√
d|Ψ(s)(T + 1)|

≤ 5 (1 + ln(2TK/δ))
√
d|Ψ(s)(T + 1)| .

415

Auer

By step 2b of SupLinRel ∑
τ∈Ψ(s)(T+1)

width(s)
i(τ)(τ) ≥ 2−s|Ψ(s)(T + 1)| .

Combining these two gives the lemma. �
We are now ready for the proof of Theorem 6.

Proof of Theorem 6. Let Ψ0 be the set of trials for which an alternative is chosen in
step 2c. Since 2−S ≤ 1/

√
T we have {1, . . . , T} = Ψ0∪

⋃
s Ψ(s)(T +1). Thus by Lemmas 15

and 16,

E [B(T)] =
T∑
t=1

[
E
[
xi∗(t)(t)

]−E
[
xi(t)(t)

]]
=

∑
t∈Ψ0

[
E
[
xi∗(t)(t)

]−E
[
xi(t)(t)

]]

+
S∑
s=1

∑
t∈Ψ(s)(T+1)

[
E
[
xi∗(t)(t)

]−E
[
xi(t)(t)

]]

≤ 2√
T
|Ψ0|+

S∑
s=1

8 · 2−s · |Ψ(s)(T + 1)|

≤ 2√
T
|Ψ0|+

S∑
s=1

40 · (1 + ln(2TK/δ)) ·
√
d|Ψ(s)(T + 1)|

≤ 2
√
T + 40 · (1 + ln(2TK/δ)) ·

√
STd

with probability 1 − δS. Applying the Azuma-Hoeffding bound of Lemma 8 with aτ = 2
and B = 4

√
T/δ we get

B(T) ≤ 2
√
T + 44 · (1 + ln(2TK/δ)) ·

√
STd

with probability 1 − δ(S + 1). Replacing δ by δ/(S + 1)S, substituting S = lnT , and
simplifying yields

B(T) ≤ 2
√
T + 44 · (1 + ln(2KT lnT))3/2 ·

√
Td

with probability 1− δ. �

5. Conclusion

By the example of two models we have shown how confidence bounds for suitably chosen
random variables provide an elegant tool for dealing with exploitation-exploration trade-
offs. For the adversarial bandit problem we used confidence bounds to reduce the variance
of the algorithm’s performance resulting from the algorithm’s internal randomization. For
associative reinforcement learning with linear value functions we used a deterministic al-
gorithm and the confidence bounds assessed the uncertainty about the random behavior

416

Confidence Bounds for Exploitation-Exploration Trade-offs

of the environment. In both models we got a significant improvement in performance over
previously known algorithms.

Currently algorithm LinRel is empirically evaluated in realistic scenarios. For a prac-
tical application of the algorithm the theoretical confidence bounds need to be fine tuned
so that they optimally trade off between exploration and exploitation. While the theorems
in this paper show the correct magnitude of the considered bounds, it is left to further
research to optimize the constants in the bounds. In practical applications these constants
make a significant difference.

Acknowledgments

I want to thank my colleagues Nicoló Cesa-Bianchi, Yoav Freund, Rob Schapire, and
Thomas Korimort for encouraging discussions, and Ursi Swaton for her help with the prepa-
ration of the manuscript. Nicoló also pointed out a major flaw in an earlier version of the
proofs. A preliminary version of this paper was presented at FOCS’2000 (Auer, 2000). This
work was supported by the ESPRIT Working Group in Neural and Computational Learn-
ing II, NeuroCOLT 2 27150. Last but not least I want to thank the anonymous referees for
their helpful comments on an earlier version of this paper.

Appendix A. Proof of Lemmas 11 and 12

We start with a simple lemma about the rotation of two coordinates.

Lemma 17 For any λ1, λ2, z, we have
(
λ1

z
z
λ2

)
= U ′ ·∆ (λ1 + y, λ2 − y) ·U for some y ≥ 0

and some matrix U with U ′ · U = ∆ (1, 1). Furthermore, if λ1 ≥ λ2, then y ≤ z2

λ1−λ2
.

Proof. We calculate the eigenvalues ν1 and ν2 of the matrix
(
λ1

z
z
λ2

)
as the solutions

of equation (λ1 − ν)(λ2 − ν) − z2 = 0 and find ν1 = (λ1 + λ2)/2 +
√

(λ1 − λ2)2/4 + z2,
ν2 = (λ1 + λ2)/2−

√
(λ1 − λ2)2/4 + z2. Thus ν1 = λ1 + y and ν2 = λ2 − y with

y = (λ2 − λ1)/2 +
√

(λ1 − λ2)2/4 + z2.

For λ1 ≥ λ2 we find

√
(λ1 − λ2)2/4 + z2 ≤

√
(λ1 − λ2)2/4 + z2 1

2
√

(λ1 − λ2)2/4

= (λ1 − λ2)/2 +
z2

λ1 − λ2
.

�

The next two lemmas deal with the eigenvalues of matrices ∆ (λ1, . . . , λd) + z · z′.

Lemma 18 If λ1 ≥ · · · ≥ λd ≥ 0 then the smallest eigenvalue of ∆ (λ1, . . . , λd) + z · z′ is
at least λd for any z ∈ Rd×1.

417

Auer

Proof. Assume that u is an eigenvector of ∆ (λ1, . . . , λd)+z·z′ with (∆ (λ1, . . . , λd) + z · z′)·
u = νu. Then λjuj + zj(z′ · u) = νuj for all j. Assume that z′ · u > 0. Then there is a j
with ujzj > 0 so that uj and zj have the same sign. Thus ν > λj. If z′ · u < 0 then there
is a j with ujzj < 0 so that uj and zj have different sign. Thus again ν > λj. If z′ · u = 0
then ν = λj . �

Lemma 19 Let λ1 ≥ · · · ≥ λd ≥ 0. The eigenvalues ν1, . . . , νd of a matrix ∆ (λ1, . . . , λd)+
z · z′ with ||z|| ≤ 1 can be arranged such that there are yh,j ≥ 0, 1 ≤ h < j ≤ d, and the
following holds:

νj ≥ λj ,

νj = λj + z2
j −

j−1∑
h=1

yh,j +
d∑

h=j+1

yj,h , (18)

j−1∑
h=1

yh,j ≤ z2
j , (19)

d∑
h=j+1

yj,h ≤ νj − λj , (20)

d∑
j=1

νj =
d∑
j=1

λj + ||z||2 . (21)

If λh > λj + 1 then

yh,j ≤
z2
j z

2
h

λh − λj − 1
. (22)

The intuition for this lemma is that essentially the new eigenvalue νj equals λj + z2
j , but

that a fraction of z2
j might be contributed to larger eigenvalue instead of being contributed

to νj. This is the meaning of the quantities yj,h: the eigenvalue νj receives the amount yj,h
from z2

h and gives the amount yh,j to a larger eigenvalue.

Proof. Clearly (18) implies (21) and (18), (19) imply (20). We prove Lemma 19 by
induction on d. We apply Lemma 17 repeatedly to obtain the following transformation:

∆ (λ1, . . . , λd) + z · z′ =




λ1 + z2
1 · · · z1zd−1 z1zd

...
. . .

...
...

z1zd−1 · · · λd−1 + z2
d−1 zd−1zd

z1zd · · · zd−1zd λd + z2
d




= U ′ ·




λ̃1 + z2
1 · · · z1zd−1 0

...
. . .

...
...

z1zd−1 · · · λ̃d−1 + z2
d−1 0

0 · · · 0 λ̃d


 · U

418

Confidence Bounds for Exploitation-Exploration Trade-offs

where λ̃h = λh + yh,d, yh,d ≥ 0, for h = 1, . . . , d − 1, and λ̃d = λd + z2
d −

∑d−1
h=1 yh,d.

Lemma 18 implies that
∑d−1

h=1 yh ≤ z2
d . Thus λ̃j ≥ λj for j = 1, . . . , d. Hence we may

proceed by induction with the matrix


λ̃1 + z2
1 · · · z1zd−1

...
. . .

...
z1zd−1 · · · λ̃d−1 + z2

d−1


 .

Then (22) follows from Lemma 17 since all elements in the diagonal grow (compared to the
original values λh) and no element grows by more than 1. �

Lemma 12 follows immediately from Lemma 19. For the proof of Lemma 11 we find
that the eigenvalues of

Z(t+ 1) · Z(t+ 1)′

= Z(t) · Z(t)′ + zi(t)(t) · zi(t)(t)′
= U(t)′ ·∆ (λ1(t), . . . , λd(t)) · U(t) + U(t) · U(t)′ · zi(t)(t) · zi(t)(t)′ · U(t)

are the eigenvalues of
∆ (λ1(t), . . . , λd(t)) + z̃i(t)(t) · z̃i(t)(t)′ .

Using the notation of Lemma 19 let λ1 ≥ · · · ≥ λd ≥ 0 be the eigenvalues of Z(t) · Z(t)′,
ν1, . . . , νd the eigenvalues of Z(t+ 1) · Z(t+ 1)′, and z = z̃i(t)(t). From (13) we have that

∣∣∣∣ai(t)(t)∣∣∣∣2 =
∑
j:λj≥1

z2
j

λj
.

For bounding z2
j we use (18),

z2
j ≤ νj − λj +

j−1∑
h=1

yh,j .

For λh > λj + 3 we have by (22) that

yh,j ≤
z2
j z

2
h

λh − λj − 1
≤ z2

j z
2
h

2

and ∑
h:λh>λj+3

yh,j ≤
z2
j

2

∑
h:λh>λj+3

z2
h ≤

z2
j

2

since ||z|| ≤ 1. Hence

z2
j ≤ νj − λj +

j−1∑
h=1

yh,j ≤ νj − λj + z2
j /2 +

∑
h<j:λh≤λj+3

yh,j

419

Auer

and thus

z2
j ≤ 2


νj − λj +

∑
h<j:λh≤λj+3

yh,j


 . (23)

If λj ≥ 1 and λh ≤ λj + 3 then λj ≥ λh/4 and we get

∑
j:λj≥1

∑
h<j:λh≤λj+3

yh,j
λj

≤ 4
∑
j:λj≥1

∑
h<j:λh≤λj+3

yh,j
λh

≤ 4
∑

h:λh≥1

d∑
j=h+1

yh,j
λh

≤ 4
∑

h:λh≥1

νh − λh
λh

by (20). Thus

∣∣∣∣ai(t)(t)∣∣∣∣2 =
∑
j:λj≥1

z2
j

λj

≤ 2
∑
j:λj≥1

νj − λj
λj

+ 2
∑
j:λj≥1

∑
h<j:λh≤λj+3

yh,j
λj

≤ 2
∑
j:λj≥1

νj − λj
λj

+ 8
∑

h:λh≥1

νh − λh
λh

≤ 10
∑
j:λj≥1

νj − λj
λj

.

From (23) we also get

∣∣∣∣ṽi(t)(t)∣∣∣∣2 =
∑
j:λj<1

z2
j

≤ 2
∑
j:λj<1

(νj − λj) + 2
∑
j:λj<1

∑
h<j:λh≤λj+3

yh,j

≤ 2
∑
j:λj<1

(νj − λj) + 2
∑

h:λh<4

d∑
j=h+1

yh,j

≤ 2
∑
j:λj<1

(νj − λj) + 2
∑

h:λh<4

(νh − λh)

≤ 4
∑
j:νj<5

(νj − λj)

by (20).

References

N. Abe and P. M. Long. Associative reinforcement learning using linear probabilistic con-
cepts. In Proc. 16th International Conf. on Machine Learning, pages 3–11. Morgan
Kaufmann, San Francisco, CA, 1999.

420

Confidence Bounds for Exploitation-Exploration Trade-offs

N. Abe and A. Nakamura. Learning to optimally schedule internet banner advertisements.
In Proc. 16th International Conf. on Machine Learning, pages 12–21. Morgan Kaufmann,
San Francisco, CA, 1999.

R. Agrawal. Sample mean based index policies with O(log n) regret for the multi-armed
bandit problem. Advances in Applied Probability, 27:1054–1078, 1995.

N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, New York, 1992.

P. Auer. Using upper confidence bounds for online learning. In Proceedings of the 41th
Annual Symposium on Foundations of Computer Science, pages 270–293. IEEE Computer
Society, 2000.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino: The
adversarial multi-armed bandit problem. In Proceedings of the 36th Annual Symposium
on Foundations of Computer Science, pages 322–331. IEEE Computer Society Press, Los
Alamitos, CA, 1995.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino:
The adversarial multi-armed bandit problem. NeuroCOLT2 Technical Report NC2-
TR-1998-025, Royal Holloway, University of London, 1998. Accessible via http at
www.neurocolt.org.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino: The
adversarial multi-armed bandit problem. Journal version, 2000.

P. Auer and M. K. Warmuth. Tracking the best disjunction. Machine Learning, 32:127–150,
1998. A preliminary version has appeared in Proceedings of the 36th Annual Symposium
on Foundations of Computer Science.

K. Azuma. Weighted sums of certain dependent random variables. Tohoku Math. J., 3:
357–367, 1967.

D. A. Berry and B. Fristedt. Bandit Problems. Chapman and Hall, 1985.

M. Herbster and M. K. Warmuth. Tracking the best expert. Machine Learning, 32:151–178,
1998.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58:13–30, 1963.

L. P. Kaelbling. Associative reinforcement learning: A generate and test algorithm. Machine
Learning, 15:299–319, 1994a.

L. P. Kaelbling. Associative reinforcement learning: Functions in k-DNF. Machine Learning,
15:279–298, 1994b.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in
Applied Mathematics, 6:4–22, 1985.

421

Auer

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

H. Robbins. Some aspects of the sequential design of experiments. Bulletin American
Mathematical Society, 55:527–535, 1952.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

422

